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1 Introduction

The serious study of security in computer systems has existenearly as long as com-
puter systems themselves. From the beginning it has beegnized that security is dif-
ficult to get right, even for systems that, by today’s staddawould be considered rea-
sonably self-contained and isolated from other systemdayave are faced with both the
growing difficulty of information security and the criticahportance that it be done well.
Information systems are growing ever larger, and theiraugons with other systems are
growing more complex. They also face increased exposurelt@kable infrastructure and
attacks from increasingly sophisticated adversaries.uBameously, the world is becom-
ing increasingly dependent on information systems in gdeats of human endeavor, and
improving their security is vital. Almost daily there arewneeports of security breaches
on systems at all levels, from personal computers used foaig-shopping, and personal
finance, to the large e-business servers through which aiggomortion of the world’s
business is conducted. Increased attention to securigaded not only to stem the more
immediate and short-term damage that results from theseles, but also to preserve and

build confidence in the information infrastructure.

Despite broad acknowledgment that information securiygsowing problem, and one no
longer confined to the largest and traditionally most ségundnscious organizations, there
appears to be little agreement on how the problem should éessed. However, there is
general agreement, at least within the security reseanstmemity, on characteristics of
approaches that do not work and on those that can be expedbedtore successful. For
example, it has been demonstrated repeatedly that secudlifficult to retrofit to sys-
tems not designed with security in mind. While security teabgies such as firewalls,
cryptography, and anti-virus software clearly help, thexariably leave vulnerabilities to

be exploited, as demonstrated by the continuing successmhttacks against ubiquitous



PC software such as Outlob¥ and super-user daemons in Unix. Furthermore, security
cannot be considered in isolation — interactions with th@renment and other systems
must be taken into account [CMS01] — as the recent concenncooss-site scriptingul-
nerabilities in Web servers amply demonstrates. As is nadelyiargued [Neu95, OIt01],
security must be treated assgstemsssue if it is to be successful. Security must be an

integral part of system development.

To begin to address the needs of secure systems develoghe@yberscience projéct
at SRI has developed a framework for an integrated appraasiedure systems devel-
opment calledsecurity co-designAcknowledging the need to integrate security into the
development process from the beginning, but recogniziagy sbcurity and functionality
are different in character, the security co-design appreaparates the development effort

into security and functional tracks that strongly influeeeeh other.

Needs of Secure Systems Development Broadly speaking, any approach to secure sys-

tems development needs to address three main issues:

1. Requirementsgetting the security requirements right and expressiegitin a way

that is useful to the rest of the development process

2. Implementationbuilding the system to meet its security requirements aathtain-

ing compliance with the requirements throughout the lifeleyf the system.

3. Information assurance (IA) casenaking a convincing, auditable, maintainable case

that the implemented system does (or does not) meet itsise@quirements.

IAs a historical note, the name “Cyberscience” was choseithisrproject as originally proposed to
DARPA ATO for the development of a mathematical theory andteel set of tools for reasoning about
cyberspace phenomena. The project was subsequently nmteel ©ASIS program in DARPA IPTO and

refocused on research in the development of secure sydtertbe original project name was retained.



The importance of determining the actual security requaretsiof a system cannot be over-
stated. In an analysis of computer security problems [Ngd&Eumann identifies require-
ments failure as a contributing deleterious cause in alivoispecific events and in at least
some events in all general categories of security failureaddition, a recent symposium
devoted to the topic of security requirements engineerthg(1] is indicative of the in-
creased attention in the security community to the requergmissue. The implementation
issue, of course, covers all implementation-related phassystem development: design,
implementation, testing, deployment, and maintenancecur@g requirements must be

accounted for in all phases.

A perhaps less obvious, but no less important, issue is thstieation of an information
assurance case (IAC). By analogy to safety cases [BS93, WKBIB98], an IAC seeks to
establish convincingly that the security requirementdefrealized system are met, and to
identify specific points of failure to be addressed in thengéteat certain requirements are
not met. The IAC can be used by system developers in maintpinformation assurance
throughout the lifetime of the system, by system assesearsrtimize potential liability
risk, by certification teams who must certify system compimwith relevant regulations,

and by management to ensure acceptable implementationaintemance costs.

The development of a methodology and tool support for thetroation and maintenance
of IACs has been the primary focus of the Cyberscience projEkis report documents
the Cyberscience team’s progress on this developmentdimg the security co-design
methodology itself, the principles underlying the conceptan IAC, the goals of IAC

development, and an exploration of tool support for IAC ¢nrgion and maintenance,
including both an initial Cyberscience-developed appnaatd an examination of possible

alternative approaches.



2 Security Co-design

The main thrust of the Cyberscience project has been théagexwent of a framework and
methodology for development of secure systems. We call goicachsecurity co-design
by analogy with hardware/software co-design [BR95, De B F, KL94, KAJW93] and
influenced by relevant work in dependable software arctites [GRS99, HDRS99, MXR95,
MQRG97, Rie99] and the development of safety-critical syt [Lev95, MOD96, IEC95].
One basic tenet of the security co-design approach is tleatige considerations are as
fundamental to system development as functional condidassand must therefore be in-
tegrated into the development process from the beginningpthfer is that the skills and
expertise required for security work are not the same a®treapiired for functional devel-
opment, and it is not reasonable to expect or require all neesndf the development team
to be experts on how to achieve both safety and security. eTblservations lead to one
of the key elements of the co-design approach: security @ametibnal development follow
separate (but not independent) tracks with strong muttlaleince. The goal of this form
of separation is to allow talent to be focused where it is reffsttive, while ensuring that

security concerns are properly accounted for in the funelidevelopment and vice versa.

For any integrated approach to the development of secutemnsgdo be successful, it must
include significant tool support to make its applicationsibg. If, instead, the approach
were simply to mandate the use of additional techniques attiadologies that must be
applied manually, then the cost of development would beqamleibitive, the effort would
be scaled back, or important elements of the approach wailohtitted. For example,
consider the canonical approach for the procurement ofaggurance systems, governed
for many years by the DoD’s so-called Orange Book [dod85}iercorresponding Euro-
pean requirements), and more recently by the Common Grit®epending on the level

of security required, systems developed to these standaudsbe subjected to rigorous



development processes, analysis, testing, and evaluayi@am accepted certification au-
thority. While the resulting system is almost certainly meecure (by some measure) than
one developead hog the specialized skills, expertise, and training requicedarry out
the development and certification make the cost of suchmgspeohibitive to all but the

most security conscious environments, such as militaryirsietligence organizations.

In contrast, our co-design vision is intended to expandt¢bpes and availability of informa-
tion assurance techniques by laying the groundwork foisttmbssist in the development
process and by allowing developers to adapt their use ofatbis to the desired level of
system security. The idea is smugment rather than replace, the engineering processes
already being used by system developers. We argue thattyemondesign will be most
successful and incur the least overhead when the membdrs tdam are able to carry on
with their work with minimal interference and without sifjnantly onerous additional or
new procedures. This is not to say that the benefits of sgaoidesign are without cost.
The envisioned interaction between the security and fanatidevelopment teams does in-
cur overhead; clearly, any additional work implies additibcost. (Of course, substantial
savings can also result from earlier detection of securawsgl) The goal is to keep the

additional net cost reasonable relative to the desired tf\assurance.

2.1 Rationale

The Cyberscience project has pursued specific elements tihedgsame broad theme estab-
lished in decades of computer security research [Lev959BleDIt01]: security must be
an integral part of systems development if it is to be sudaksat the same time, we rec-
ognize that the skills and expertise required for effecsigeurity work are in many ways
different from those required for effective systems wonloifi a functional standpoint).

These differences in required skills and expertise undamiptarise in part from a funda-



mental distinction between the character of functionaliig that of security: functionality
is concerned with what a systemustdo, while security is concerned with what a system
must notdo. To take an oversimplified view, we might say that a systenggneer, who

is charged with the task of building a system that meets iceft@ctional requirements,
is most concerned with finding ways to construct a systemdbes all the things it needs
to do; the resulting system may in fact do more. A securityegtxon the other hand, is
most concerned with ensuring that the system does not detljiror indirectly, anything

it should not do. To the security expert, anything the systie®s beyond its functional
requirements could be another potential avenue for sgdumiaches. In short, the skills
and expertise of a systems engineer are geared more towdidgrhings work, while

those of the security expert are geared toward keepingghprmected.

This is not to argue that there is no overlapping of concegta/éen the functional and
security realms. If an effort to design and build a securéesyss to succeed, clearly each
side must have substantial awareness and understandihg oftter’'s requirements. One
way to accomplish this would be to assemble a team whose membe well-versed in
both the functional and security aspects of systems denedop but this is unrealistic,
since individuals with significant talent and training orttbsides are rare, relative to the
pool of available talent for the two sides separately. Nouldt be realistic or cost-
effective to train the team in all the required areas of etxgper For these reasons, we
argue that a better approach is to consider the functiorthlsanurity aspects of system
development as separate tracks, but with strong mutuaéiméle. The notion of separation
is important, because it explicitly focuses the differesquired skill sets where they are
most useful. From the standpoint of strong mutual influetioere needs to be continual
communication between the two sides to ensure that theresgants of each are accounted

for by the other as the effort proceeds.

Influence from the security side to the functional side imeslthe security team informing



designers and implementors of the security requirememt$fialping them to make design
and implementation decisions that lead to the satisfacfdhose requirements. During
the system development process, designers and impleradat@ many choices, such as
hardware platforms, use of off-the-shelf software, immatation languages, and algo-
rithms. The range of choices may of course be constrainebdéfunctional requirements
themselves, as well as cost considerations, and the sixiferience, and preferences of
the development team, among other factors. Security rep@nts, too, can be viewed as
constraints on the design and implementation optionsahailto the development team.
For example, a security requirement stating that the systest protect information from
unintended disclosure would most likely eliminate the usgeartext communication over
public network links as an implementation option. A primaegponsibility of the security
side of the co-design approach is to make sure that the geconstraints are considered
when design and implementation decisions are made. Thismohyde the identification

of additional design and implementation alternatives theét the security requirements.

Influence from the functional side to the security side imeslthe designers and imple-
mentors keeping the security team informed of functiongunements and design and
implementation choices, as this information drives thesttgyment of more specific secu-
rity requirements. For example, at the architectural leitainay be possible to satisfy
the functional requirements of a particular informatiorsteyn either through a central
mainframe with directly connected terminals or through stributed system involving

networked workstations. From the security team’s pointiefwit may very well be pos-

sible to adopt either architecture in building a system Haaisfies the top-level security
requirements. However, at a more detailed level, the dgcoonstraints entailed by a
mainframe-based system will most likely be quite differieaim those of a distributed sys-
tem. Is ittherefore critical for the security team to know what design and implementation

alternatives are being considered so that they can makega®gn elaborating the security



requirements, which, in turn, feed back into the functidredk.

2.2 A Framework for Security Co-design

Based on the particular needs of secure systems developuitined earlier and the co-
design philosophy just described, we have developed a fwrankeand methodology for se-
curity co-design that addresses all the major needs in agratted way. This framework is
strongly influenced by existing approaches to systems ergimg, in particular, our work
on dependable software architectures [GRS99, HDRS99, MbXREQRG97, Rie99] and
design of safety-critical systems [Lev95, Neu95]. A majativating goal of the frame-
work is that it bepracticaland have aound mathematical basi®n the practical side, the
methodology aims to augment, rather than replace, exist@vglopmental practices. As
suggested by the earlier discussion of our co-design piplog we believe that the max-
imum benefit to secure systems development will be obtaigellbwing team members
to apply their existing skills and expertise appropriategher than insisting that members
be retrained or otherwise forced to adopt fundamentally m@eedures. At the same time,
the emphasis on mutual influence between the security artidnal development tracks
should naturally lead to enhancement of the skills and kadgg of both sides. From the
standpoint of providing a sound mathematical basis for gesystems development, the
methodology incorporates accepted and well-understaoaHicapproaches to security and

system modeling.

Figure 1 illustrates the security co-design methodology ligh level. Our approach can
be characterized generally (and somewhat ideally) as aldop development process,
although it explicitly allows feedback to, and revisitin earlier developmental stages.
The process starts with a statement of top-level missioaables, which may or may not

even refer to a computer or information systpar se but which should capture what is



Mission Goals

Security Functionality
elaboration elaboration
Adversaries, Operational

Threats requirements
Functional
Attacks description
Vulnerabilities Mechanisms

Figure 1: Security co-design method

to be achieved, by whom, and in what environment. That ispission objectives should
include not only top-level functional requirements, bigcahssumptions about the target
user community, the intended operational environment,casti constraints. The mission
objectives will also include a statement of top-level sgguequirements, which will gen-
erally address (at least) the following major categoriesemfurity issues: confidentiality,

integrity, and availability.
e The process starts from top-level mission goals, envirgniaieassumptions, cost
constraints.
e lIterative elaboration is performed at successively morezte levels of abstraction.
e Security requirements constrain design/implementatpidions.

¢ Different options must be evaluated with respect to seguariid functional require-
ments, exposing tradeoffs and forcing conscious, docuedeand justifiable choices

throughout the development.



e Security and functional elaboration steps are (or can lejleaved; there is no re-
guirement that there be one security elaboration step fmydunctional elaboration

step (or vice versa).

By following the elaboration/evaluation process, all tiesided products (or at least all the
raw material for all the desired products) are generategiirements, architecture, design,
implementation, and evidence for the IAC. That is, evenghs recorded as the process
proceeds. We do not necessarily insist that all the docwsriengenerated and kept up to
date during the process, but a co-design “record” shoulddiatained with all the required

information.

Main Elements of the Framework The basic approach to security co-design is intended

to provide answers to two questions:

1. How should security requirements by expressed?

2. How should an information assurance case be constructed?

Our goal in answering these questions is to provide a moensfic foundation for secu-
rity engineering. Thus, we have sought to answer the firsstipreby providing a formal
language for expressing and reasoning about securityresgants, and we have sought to
answer the second by providing a formal, yet easily undedstiale, notation for express-
ing the argument that security requirements are satisfibg. security co-design method
provides the system engineering framework in which thegatioms can be effectively

employed.

The general approach of separate-but-coordinated eladnood functional and security as-
pects follows directly from adequacy criteria for answerthe two questions. In particular,

we believe that we should not require extensive changesigtix system development

10



methods. Experienced developers of secure systems atly sigry of any proposed rad-
ical changes in development methods that have been proyaadtice to “work”, in the
sense that the resulting systems may not fully meet all rements, but do prove to be
reasonably secure in practice. This constraint suggeatghb formal analysis of secu-
rity concerns can best be integrated into existing devetygmractice by having a team
of security analysts provide proactive and reactive adtacthe developers as develop-
ment proceeds. This, in turn, suggests that a completerdestgprd be captured during
development, so that security analysts will have all thermfation they need to do their
jobs without having to require the functional developersupply the information to them.
Of course, the idea of maintaining a complete developmeamtrdehas other advantages,
and has frequently been proposed in the past as a soluti@ritug software engineering
problems, but the benefit of having the record seems espyecahpelling when an IAC
must be constructed, because just about any design depisipihave a serious impact on

security.

Security Requirements Elaboration One of the most difficult issues in attempting to
develop a widely useful approach to dealing with securitjureements in system devel-
opment is the lack of consensus on just what security requ@nésare. Even the basic
concepts employed in security requirements statemenysogrsiderably. Security re-

guirements can be expressed in terms of

potential system vulnerabilities that must be avoided,

attacks, or general attack strategies, that must not sdccee

system threads, or use cases, that must never occur,

capabilities of adversaries that must be insufficient tovalthem to interfere with

system operation,

11



or in any of a host of different ways. While there are logiadhtions among these con-
cepts — for example, attacks exploit vulnerabilities, sm@lating a certain vulnerability
guarantees that attacks essentially relying on exploiadf that vulnerability will fail —
emphasis on any one to the exclusion of the others entailsntionent to single security
perspective, which may not be appropriate in all circuntstan This lack of consensus is
one reason why there is no standard methodology for segeqtyirements analysis, and
helps explain why security requirements are often left ioiiplor are only partially and
informally captured. In fact, requirements that certairch@nisms intended to provide se-
curity — passwords, encryption, firewalls, and so forth — bedloften substitute for true
security requirements, although this leaves the questfiovhat security properties these
mechanisms are intended to provide unanswered and, heakesravaluation of whether
use of the mechanisms has the intended effect impossiblee $pproaches to security
even entirely eschew the notion of requirements, optintgads for requiring the use of
system development methods that tend to result in more seystems but that do not

guarantee any particular system security properties.

We believe that all these different concepts have a roleay ipl capturing security require-
ments. The different concepts correspond to differentiseveabstraction in the system’s
functional design. They play roughly the same role gtgtes[Gar96] play in functional

description. For example, it makes sense to talk aboutmsyatick scripts at the functional
level where the external interface to the system has beamedefout talk of a potential vul-
nerability in a particular component — say, an overflow of sdmffer — makes sense
only at a lower level where the system component has beedunted in the design. That
the attack must fail is a constraint on the lower-level desitpat vulnerabilities such as
undetected buffer overflow must be avoided is an elaboratidhe attack constraint, one
way of making sure it is satisfied. Whatever mechanism isthtced to ensure that buffer

overflow cannot occur also guarantees that the attack will fa

12



A major goal of the Cyberscience project is to put the prooédsveloping system security

requirements on a more scientific footing.

e The process must provide effective guidance to the reqenésndeveloper, and
whether a particular set of security requirements was deeel in accordance with
the process must be determinable by independent reviejustss in the case of the

current method-oriented approach.

e The result of the process, the requirements statement, pnoxgtle effective guid-

ance to the system developers.

e There must be a scientific justification that the procesdtesuthe right security re-
guirements, i.e., all the requirements that must be satigfibe system is to perform

its mission.

Information Assurance (IA) Case Construction  Since complete statements of security
requirements, even in informal terms, are rare, complegfenaents that a system satisfies
its security requirements are rare as well. Often, a coraldie body of evidence that a
system has desirable security properties is collected -gimgrfrom formal verifications
of protocols employed to red team failures to breach — bueth@ence is left to speak for
itself, rather than used as premises in an argument thaygters is sufficiently secure to
perform its mission. As a result, the strength of the evigaatard to assess, and omission
of evidence required to assure high confidence in the systeeuurity is easily overlooked.
Thus, there is a sharp contrast between security casesdtansy with stringent security
requirements and safety cases for systems with stringéetysaquirements. Safety cases
specify exactly what evidence is relevant, what safety tygges are influenced by that
evidence, and how strongly the evidence influences theysafgbtheses. The other main

goal of our effort is to show how to bring a level of rigor to atruction of an IAC that

13



is comparable to the level of rigor commonly seen in safegesaThis will place IAC on
a more scientific basis, allowing for review and refinementhef case when more infor-
mation is obtained, when the system or its security requerésichange, and so on. Thus,

much higher levels of confidence that security requiremargsatisfied can be obtained.

14



3 Information Assurance Cases

In current practice, many different approaches are emglay¢he attempt to achieve an

adequate level of security.

e There is intensive analysis of the system design, whereysisalechniques range
from informal inspection of system design documents to &dramalysis of mathe-

matical models of the system.

e Standard technology — such as firewalls, encryption, amdsidn detection — that

provides security-related functionality is incorporatedhe design.

¢ Best state-of-practice software engineering techniquesueh as extensive testing

— are employed in development.

e Systems are continually patched to eliminate flaws that s@dered as a result of

attacks by red teams and, after deployment, by actual oppene

This list could be lengthened indefinitely, but two main peiare already evident. First,
there is typically a great deal of evidence collected to supa claim that a system is

adequately secure. Second, the evidence is as disparats asluminous.

Given all the effort devoted to ensuring security, how is#ttsystems so often fail to meet
their security goals? We believe that one factor is the géywd®n what is directly estab-
lished by all the evidence that the system is secure andigecbjectives. For example, if
we have evidence that a standard encryption algorithm wed tasprotect the information
in a certain file, and we also have evidence that the encrypigorithm was correctly im-
plemented, then we have good evidence that the informatitirei file cannot be accessed
without the decryption key. However, we are still far fronvimg established the confi-

dentiality of the information in the file. Even leaving asithe obvious possibility of an
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attacker obtaining a key, there are many other ways thenrdbon might be obtained, for
example, insertion of a “trojan horse” that supplies theiinfation to an attacker prior to

encryption or after decryption into the storage managersysiem.

These considerations suggest that establishing a desgkddvel security property from
the available evidence is bound to require a complex argtirieich arguments are, at best,
incompletely recorded during the design process. For elgnipe design record might
include a comment that a certain security feature was ieclud order to thwart a certain
class of attacks, or that an analysis of the code shows tteatairt class of attacks will fail.
However, such arguments are generally incomplete: thépreassumptions that have not
been made explicit, and it is often questionable whethetitbd evidence actually provides
adequate support for the conclusion. Moreover, the coimigpurportedly established are
typically much lower-level than the real security objeesywhich have to do with system
availability and integrity, information confidentialitgnd other high-level properties, rather

than failure of some class of attacks.

Ultimately, determination of whether the high-level sétyuobjectives have been satisfied
is left to the judgment of experts. Typically, the reasorpngcess these experts employ to

arrive at their evaluations is entirely ephemeral, whick daumber of disadvantages.

e The reasoning ison-reviewable No one else can check the reasoning for gaps or

errors.

e The reasoning process i®n-repeatable Even if another expert reaches the same
conclusion, there is no way of determining whether or notdaehed it by the same

route. Thus the reasoning process itself can be validatiydradirectly.

e As a result, the reasoning processi@-improvable There is no way to determine
whether a given pattern of reasoning can be relied upon giy&v provide correct

results, since the details of the expert’s reasoning araawik.
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¢ And, most important, the reasoningnsn-maintainable Systems evolve after de-
ployment, and there is no way of determining whether or hoywgiven change to

the system should influence the belief that it is adequatsyre.

At best, experts’ assessment processes are codified irastisrttiat offer recipes for secure
system development. There is no question that this offetaineadvantages. For exam-
ple, if systems that satisfy a standard frequently provdeqaately secure, an attempt can
be made to improve the standard. However, because the angjtima¢ satisfaction of the
standard can be expected to guarantee adequate secunitgtteen made explicit, deter-
mining what has gone wrong can be problematic. This may bebtie reasons why the
standards-based approach has not been very successfeldmgihigh levels of security.
Another reason may be that the variation in systems andigeoeeds is too great for a

simple cookbook-style approach to satisfactorily address

It should also be noted that independent assessment ofearsgstecurity is an expensive
business. Detailed knowledge of the system, its secumfyirements, and all the evidence
relevant to determining whether those requirements haea batisfied is needed. Only
members of the development team have this knowledge, bytteehardly likely to find
any security holes that they have allowed to slip throughndudesign and development.
If an independent assessment is to be based on more tharagiadtiow understanding of
the system and the security needs, the assessor must speksl-wemore likely, months
— “getting up to speed”, that is, learning everything abbetsystem that is relevant to the
assessment. This impact on cost and schedule is usuallgeptable. Hence, independent
assessment, including any assessment performed as pafbiwha system certification

process, is generally based on a relatively shallow unaiedgtg of the system.

We hypothesize that a solution to these problems is to makartjument that the system

satisfies its security objectives explicit and complete.e @@ason for thinking so is an
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analogy that can be drawn between safety and security. rfBgstath stringent safety re-
guirements must be certified safe prior to deployment. Thigfication process essentially
amounts to review of aafety casean explicit argument by the system’s developers that
the safety requirements have been satisfied. Only if thenaggtiis found to be convincing

is the system is certified. The argument can be checked f& gag errors. If gaps are
discovered, they can be filled. If errors are discoveredy ttaa be fixed. If a form of
reasoning employed on the argument does not reliably leadrtect results, conclusions
established via its use can be discounted by the certifiechahges are made to the sys-
tem, their impact on the safety case can be evaluated. @otieall the relevant evidence
and making its relevance explicit makes it relatively easyslystem certifiers to “get up to

speed”.

We have tested this hypothesis by constructing partfakmation assurance cas@#\Cs)

for two prototype systems having stringent informatioruassce requirements.

3.1 Safety Cases

In the safety world, the provision of a safety case for eadtymed critical system is the
norm and is frequently mandated by certification autharitieafety cases are required for

military systems, the offshore oil industry, rail transfadion, and the nuclear industry.

A safety case is an explicit argument that a system satislesant safety requirements.
Typical safety requirements state that the probability etain system failure modes or
certain effects of system failure (e.g., loss of human lde do system failure) must be
less than some small parameter. For some systems and paramletes, the expected
number of failures that will be observed during the lifetiofehe system is large enough
that system failure statistics will reveal whether safetyuirements have been satisfied; in

other cases, failure will be so infrequent that whether irequents have been satisfied will
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always remain a matter of conjecture.

Prior to fielding the system, it is generally impossiblesttsurethat safety requirements
have been satisfied. But it is possible to develop arguméatssupport reasonably high
confidence that safety requirements have been satisfiedhahi$ the objective in safety

case creation.

The safety case can be broken down into three parts.

e First, there is a collection of relevaatidence The evidence consists of all the facts
relevant to the safety assessment. This can range fronvedyabard data, such as
system test results, to quite soft data, such as adherenegain system engineering
practices during development. In particular, both the Itesaf system analyses —
e.g., computations of failure rates based on statisticalisition — and any evidence

supporting the assumptions upon which system analysesaesl lare included.

e Second, there is a collection sdifety requirementd hese include not only the safety
requirements given as part of the system specification,|boteay derived safety re-
quirements extracted from the given requirements duriegatimlysis process. For
example, any categorization of system failure modes inited additional, more spe-
cific, safety requirements. Also, all the assumptions manleg safety requirements
and system analysis are included among the requirementg svidence must be

provided to show that these assumptions are satisfied.

e Finally, there is a collection odrgumentsthat provide the grounds for believing
that the safety requirements are supported given the eséddrhese arguments can
be specific to the particular evidence, more general (iaetihe formgenerally,
evidence of this sort indicates that a goal of this sort iss$etd). Arguments may or

may not explicitly indicate the strength of support prowdy evidence, and may or
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may not determine the net strength of support given theeehtidy of evidencé.

A good introduction to the best current state-of-practitsafety case development can
be obtained by examining the strengths and weaknesses of time premier commercial
tools for safety case definition, the Adelard Safety CaséoE@SCE)3 ASCE represents
the safety case as a directed multigraph, with three nodestgpd three link types. The
three node types —evidenceclaims andarguments— correspond quite directly to the
three parts of the safety case identified above. The firstyip&,is evidence farindicates
that some evidence node provides evidence for some arguradat claim node, or other
evidence node. (The latter two cases are probably best hhadgs resulting from the
elision of a trivial argument node.) The second link typepports links argument nodes
to claim nodes that it supports. Theagportdinks come in various strengths, indicating
whether the argument provides weak, strong, or some intiatgeedegree of support for
the claim. The third link types a subclaim gfis used to indicate decomposition of a claim
node into subclaim nodes. Likgupportslinks, is a subclaim oflinks come in various

strengths, to indicate the importance of truth of the subrcta truth of the claim.

ASCE’s main selling point is that it makes the structure oifrdarmal safety case explicit,
and does so in a somewhat more useful way than the tablesiofscénd their support
representative of typical industrial practice. For examply associating strengths with

a subclaim oflinks andsupportdinks, the ASCE representation suggests where strength-
ening arguments will have the greatest impact on the oveta@hgth of the safety case:
strengthening weak support links to important subclaimise &arguments themselves re-

main informal, which has some substantial practical acaged. First, providing wildly

2Unfortunately, this terminology has not been standardiFedt example, in the Safety Argument Man-
ager (SAM), a computer-based tool for constructing safases, the analogues of claims are called “goals”
and the analogues of arguments are called “warrants”. Hexvthe concepts are essentially the same.

3A trial copy can be downloaded from the Adelard Web sitejw.adelard.com
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disparate sorts of evidence for an argument is not a prolileme is no issue of how some
piece of evidence can be represented in a particular reagfnaimework. Second, no par-
ticular technical skill is required to understand the safsise for a system, just enough
familiarity with the domain and the system to allow the dgsans of the evidence, argu-

ment, and claims to be understood.

However, informal arguments have some inherent shortogenas well. The most im-
portant of these is the absence of a normative standard etextngines whether, given the
evidence, the arguments do in fact strongly support theysafeims. In technical terms,
one would say that there is no criterion for determining Wwkethe argument imductively
strong' — or, if the conclusions have been appropriately qualifietithe correctness of the
relevant principles of non-demonstrative inference hanbecluded among the assump-
tions of the argumentjeductively valid Thus, substantial domain expertise is required
to determine whether the evidence really provides adecugdport for the safety claims.
Providing explicit arguments certainly makes this decistasier; however, there is still a
possibility that experts will disagree in their assessmeifthe strength of a safety case.
When disagreements occur, the absence of an objectiveasthtitht determines who is
correct means that the disagreement amounts to a diffex@neginion and there is no

mechanism to help achieve convergence.

Thus, one substantial research focus has been the form@hizasf safety cases. The
best known work in this area is the attempt to representysafetes using Bayesian net-
works [DMS95, LW97]. Roughly, the idea is to replace an infaf argument that connects
evidenceF to safety claimd by P(E | H) and P(E | ~ H), the probability of observing
E given thatH is true and the probability of observirdg given thatH is false. Similarly,

4This terminology is a bit unfortunate, since it suggests ihduction is the only relevant principle of
non-demonstrative inference. (When the expression gainaency, this was generally thought to be the

case.)
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an informal argument that subclaif’ supports claim# is replaced byP(H' | H) and
P(H' |~ H). These conditional probabilities, together with the ctiodal independence

assumptions implicit in the structure of the network, d@iee a probability distribution.

totality of evidencef,

In particular, the probability of each safety claihin the system requirements given the
AE).

P (H
Ec&
can be calculated via repeated application of Bayes’s Hmeor
The principal advantage of this formalization is that itv&s the problem of evaluating the
inductive strength of the safety case: given the evidendetla® probability distribution,
the probabilities of the safety claims are uniquely detaedi If the case for some safety
claim is strong, according to this criterion, but seems weagome expert assessor, then

either

(1) the assessor must disagree with some specific estimatearfditional probability

or some specific independence assumption,
(2) the expert’s assessment is based on evidence not ¢xplice safety case, or

(3) his assessment is based upon flawed reasoning.

If the assessor can defend his own differing estimate of iional probabilities and con-
ditional independencies, or can present additional eweethe accuracy safety case can
be improved. And so there is a method for focusing on spedifiesdisagreement among

experts that improves the chances of achieving consensus.

But the advantages of formalization are not unalloyed. Egpee shows that experts find
it difficult to estimate the relevant conditional probatiés, and have little faith that their
estimates are accurate to even one significant figure. ThedBay calculations thus pro-

duce results much less reliable than the use of precise muprebabilities suggests. For
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example, one would naturally be inclined to prefer a systesigh supported by a safety
case where all required safety properties have a probabil@d.97 or greater to a competing
design supported by a safety case where some required padgigrties have a probability
of only 0.9. However, given the unreliability of typical atitional probability estimates,
the difference between a computed probability of 0.9 and & @ot significant, that is, the

difference provides no basis for preferring what appeaisigfacie, to be the safer design.

Our belief is that, in practice, an intermediate degree whhdization is preferable to either
extreme. Replacing conditional probabilities with a srialte range of values — perhaps
a scale of 1 to 5, with 1 representingry unlikely 2 representingomewhat unlikely3
representin@s likely as nat4 representingomewhat likelyand 5 representingery likely
— greatly simplifies the problem of obtaining parameter gadstimates from an expert.
Similarly, Bayesian updating can be replaced by having #pee provide a function for
computing a likelihood value for a claim from the likelihowdlues of its supporting ev-
idence or subclaims. In practice, experts seem to find venplsi functions sufficient,
often just minimum, maximum, and average. Given the anabmjyween safety cases and
IA cases, which the following discussion addresses in metaild we also believe that an

intermediate degree of formalization is most appropriatdA cases as well.

3.2 SEASasan |AC tool

The analogy between safety cases and IACs is based on tloa tioéit IACs should play
the same role in security assessment that safety cases dfetp assessment. Given the
intended similarity in function, considerable similarity structure is natural. Thus, we
assume that an IAC consists of evidence, IA claims — some oflware given as 1A

requirements, and some of which are derived by analysis -é-eaplicit arguments linking
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evidence to claims8. Given the experience of the safety community, we decidetigha
graph-based approach is clearly preferable to a lineaib@s¢d approach. As mentioned
in the previous section, we think a level of formality gredten the informal hypertext of

ASCE, but less than the probability distributions chanazgel by Bayesian nets, is the best

compromise between practicality and the attractions ajrthe

As a starting point for our IA case development approach, ese the Structured Evi-
dential Argumentation System (SEAS), developed by thefigidi Intelligence Center at
SRI® SEAS was originally developed to aid intelligence analirstssessing evidence that
either supports or refutes hypotheses, with the overall gfoanticipating potential crises
around the world. The system was motivated in part by therghen that, while formal
methods are difficult to apply to problems of intelligencalgsis, decision makers could
benefit from an intuitive, easy-to-use system that provstescture, rigor, and automa-
tion. Thus, although SEAS was not designed with our appiinah mind, it nevertheless
shares our goal of combining broad usability with scientifior. More important, SEAS

incorporates several specific features that make it a goochn@our needs:

SAttempts to exploit an analogy between safety and secuste loften been criticized on the grounds
that safety is inherently probabilistic — one never claiimet tfailure is impossible, merely very infrequent
— where security is not. However, two responses are posdiitst, while high-level security claims may
not be probabilistic, IACs are not intended to establish tihea claims arelefinitelytrue, merely that they are
probablytrue, where “probable” is being used in the subjectividsk (@. Bayesian) sense rather than the fre-
guentists’ sense. Second, since we know, based on expertaatall complex systems fail to provide perfect
confidentiality, integrity, and so on, it arguably makes @sense to replace these absolute concepts by more
probabilistic notions. For example, given that no realeystan guarantee integrity in all circumstances, a
more reasonable requirement is that failure of integritpésely very infrequent. In fact, Littlewood [LW97]
has propose@xpected effort to breaclan explicitly probabilistic notion, as a practical rematent for a
range of traditional security properties.

8For more information about SEAS, sktp://www.ai.sri.com/"seas
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It is graph based

It fully formalizes non-demonstrative arguments; thatmclusions have strengths

based on strengths of hypotheses and strengths of influence.

It replaces probabilities by small ranges of discrete vathat are meaningful to both

developers and consumers.

It replaces conditional probabilities and Bayesian infeesby simple user-selected

rules for strength propagation (e.min, max mear).

SEAS is built upon a foundation of mature, widely used soffeita support various aspects
of evidential reasoning developed over the past two decatdbs Al Center. For example,

both the Grasper and Gister systems are components of SEAS.

SEAS is a Web-based system that supports the creation ahaitekpn of a “corporate
memory” organized around three main object typaggument templatesvhich are hi-
erarchically structured sets of interrelated questi@amgumentswhich are instantiations
of argument templates with answers to the questions rel&biyarticular situations; and
situation descriptorswhich characterize the situations to which the argumemptates
apply. In the context of IA case development, argument tateplare the generic struc-
tures of hypotheses pertaining to particular IA goals, arguts are instantiations of these
arguments with evidence, and situation descriptors cteniae the part(s) of the system
to which the argument templates apply. In SEAS terminolagguments are indexed by
situations, which in the 1A context, means that argument&peng to particular parts of

the system can be readily identified and retrieved.

While developing the prototype IACs using SEAS, we investgl the utility of various

extensions to the system. One of our longer-term goals isable formal analyses of IACs,

"For more information on Grasper and Gister, B#p://www.ai.sri.com/software_list

25



for example, a formal analysis of the breadth of coveraga®fAC relative to the system
design, usage scenarios, and other relevant factors. Boingithout compromising ease

of use, is by no means straightforward.

3.3 [AC Construction and Maintenance

The construction of an IAC is not an after-the-fact activiy be as complete and convinc-
ing as possible, development of an IAC should be initiateti@earliest phases of system
development and maintained throughout the system lifeecyitcan be exceedingly diffi-
cult to recapture in the latter stages of a system engingeiffort all the analysis, reason-
ing, and decision-making that went into the process, whictuin is likely to make 1AC

construction after the fact more expensive and the reguli@ less compelling.

The fact is that much of the evidence and argumentation wefxea convincing IAC

is generated, at least implicitly, during a typical systemgieeering effort. For example,
system architects make design decisions intended toys#tisfunctional and security re-
guirements of the system, subject to cost and scheduleraorist Each such decision has
some justification, and this justification can become padroargument that a system that
faithfully implements the design will satisfy its requirents. Similarly, implementors se-
lect or produce hardware and software components inteodedlize the design faithfully.
Here, too, the selections have some justification, whilecimmponents have certain evalu-
able characteristics (e.g., by analysis, simulationirtgsand debugging) that can provide
evidence to support claims of correct implementation. Binobservations apply to system

deployment and maintenance activities.

One of the keys to developing convincing IACs is to make al digumentation and ev-
idence explicit and to capture it completely during all pdea®f the system life cycle.

Indeed, this notion is one of the primary motivations for tiee of a kind of corporate
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memory we call theo-design object bases a fundamental part of our security co-design
methodology. Acknowledging the need to integrate secumity the system development
process from the beginning, but recognizing that secunty fanctionality are different

in character, the security co-design approach separategetrelopment effort into secu-
rity and functional tracks that strongly influence each othEhe co-design object base,
or COB, is a central component to support this methodolodye TOB is essentially a
living history that records the evolution of a system’s depenent. It constitutes a central
store from which can be generated all the critical produttssecure-system development
effort, in particular, the IAC. In fact, IAC constructionike driving application for COB
development. And, as with the IAC itself, we are using SEA8asstarting point for COB

development, because of its existing support for maintemaha corporate memory.

A better understanding of the contents of an IAC can be gaiyeexamining examples.

The design-stage IACs for two different systems are desdriiy the next section.
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4 Test Casesfor the | AC Concept

The use of IACs cannot be explored in depth without focusinga@ncrete examples. To
better grasp the possible structure and composition of &) i#e developed a design-
level IAC in outline form for a dependable intrusion-tolet&Veb server (th®IT system
developed under a separate project at the SRI System Desipratory (SDL) [VAC 01].

In addition, we have used SEAS to develop a design-level I&Cah intrusion-tolerant
version of a Joint Battle Infosphere system (IT-JBI) thdiesng developed under DARPA
sponsorship by a team (including SDL) led by BBN Technolsgie

The choice of systems used to test the IAC concept and SEAStisritical to our dis-
cussion, and we do not address in detail here the need forltharial IT-JBI systems nor
their use. However, the fact that the systems were undelajawent at the time of IAC
construction was helpful, since, as mentioned above, sdthe mmformation designers use
to verify dependability of a system is often lost, unavd#abr out-of-date after the system
is complete. Also, because the goal of an intrusion-totesgstem is to obtain higher de-
pendability from lower-dependability components, theuangnt that the system meets its

requirements is particularly important and nontrivial.

4.1 AnlACfor DIT

The goal of the DIT system is to provide, at reasonable castsgem for high-availability
distribution of Web content, by incorporating widely awdle, relatively low-assurance
COTS software into a high-assurance intrusion tolerangded he emphasis is on avail-

ability and integrity, not confidentiality, of the service.

The system is based on the observation that widely availaBi€S Web server software

is feature-filled and complex, and tends to contain secutitgerabilities. (Examples in-
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clude the infamous Code Red virus, which attacked Micrd$gfinder Windows, and the
recent “Slapper” Linux worm that exploits Apache/Open3SBut since different Web
server programs and operating systems typically haverdiftevulnerabilities, a system
with redundant diverse Web servers on diverse platformsimeagble to provide a greater
assurance of availability and integrity, provided we hasleable mechanisms to compare
and forward responses from the redundant servers to cli€h&sDIT system is a network

of redundant COTS servers and other machines that provatersachanisms.

The architecture (Figure 2) containgeoxyto forward client requests to a collection of
diverseapplication serversunning COTS software and a monitoring subsystem that helps
contain intrusions. The proxy is a hardened platform rugrarsmall amount of custom
code. The simplicity and customized nature of the softwaréhe proxy makes the proxy
more amenable to hardening than the application servenshvene running more com-
plex, harder-to-verify COTS software. The proxy accepentirequests, forwards them to

a number of application servers, compares the contentedusy the application servers,
and, assuming enough agree, sends the corroborated areieolihe client. The proxy
and application servers communicate over a private netéatkis monitored by an intru-
sion detection system (IDS). The IDS provides assurandeltieehaving compromised
application servers will be detected and corrected (eygrebooting from read-only me-
dia), so that compromises are likely to remain limited to akmumber of application
servers. Aragreement policgetermines which and how many servers are queried by the

proxy for each client request, and how sufficient agreensedéiermined.

Since we are describing an IAC for a partially complete systee will only sketch the
scope of the IAC and the material it will contain, and thencdié® some portions of the

case in more depth.

At the highest level, the design-level IAC is an aggregatibseveral types of evidence and

arguments, including
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Figure 2: Architecture of the DIT system.

e adesign assurance argumehiat the system is correctly designed, i.e., that the sys-
tem will meet its requirements making certain assumptid@itbehavior of off-

the-shelf components, and

e component reliabilityassessments for off-the-shelf components that are indlude

the system.

The design assurance argument also contains assessmémstobls used to build the
system. The main types of components in DIT are COTS Web seofavare, operating
systems, computer hardware, and network hardware. Foroesponent, we collect evi-
dence that it will behave as needed in the design, relyingoamponent specifications, past

performance of the component, and reliability of the congmimprovider.

The design argument makes assumptions about componentatarattions of compo-
nents that are verified in the component assessment anaigtgstitions of the IAC. But
testing also provides some redundant evidence, duplitgtéte design argument, that the
system will operate properly. Note that at this level — aouaidr levels — assertions can
be combined in more than one way. They can combine in a deg@uetshion, in which

new assertions are inferred from old ones, or in an aggregagy, in which similar, inde-
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pendently derived assertions join to give greater assaranc

Since evidence for the latter two portions of the IAC is ingdate, we now focus on the

first portion, the design assurance argument.

A design assurance argument is an assembly of evidencgndésiails, and reasoning
that makes a convincing case that the design of the system, dbstract architecture to
the most concrete details of implementation and operatiwets appropriate operational
and security requirements. It is important that the argurnrestude descriptions that are
as concrete as possible, since the point is to argue thaysbens itself runs according to
its higher-level requirements. For instance, formal veaiion focuses on the relationship
between two descriptions, such as between a specificattba piece of code. An argument
would include this verification, but should also give som&sin, not necessarily formal,
that the system actually executes the code that was verifiadd-not, for instance, Trojan

code.

The argument can be viewed as an explicit representatidredype of argument designers
implicitly create when developing a system: it is a struetbassembly of all the design
decisions, reasoning, and factual information that wodised to explain each phase of
system design. Typically, at any given point, a developeuses on part of the system,
at a certain level of abstraction. Properly expressed, ¢lgeirements, design choices,
reasoning, and assumptions being made at that moment caedas a “design element”

that forms a part of the assurance argument.

The approach we use to capture the assurance argument FTttsystem is to assemble
many such design elements, linking them together by chgakasumptions and require-
ments (Figure 3). At the top, we have the requirements foiddsgn: high-availability

Web service at reasonable cost with a certain throughpwthility. The design element

below it describes the topology and basic function of theesys one proxy that commu-
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nicates with the client and forwards requests and respdretesen the client and each of
multiple COTS application servers. From this design, itleacthat in order to meet the
requirement that expected attacks be tolerated, we must makimber of assumptions,

including

¢ A majority of the application servers are functioning prdpat any one time.
e The proxy implements an agreement policy that serves ddimegjority) content.

e With high assurance, the proxy is not compromised by attacks

Design at more concrete levels naturally focuses on the thasic parts of the architecture:
the proxy, the application servers, and the network compisnennecting therfi.Design
elements for each of these parts detail the more concretmaltdesign of the components

and how it meets the architecture assumptions.

We also look more concretely at how the components fit togeftoe example, we specify
the exact protocols used between proxy and applicatioresei(\HTTP over TCP/IP on
Ethernet). We also argue that the concrete interoperatibowfs the assumptions of the
more abstract architecture design. For instance, once ow imat the application servers
are computers running COTS operating systems and softesagiethat they are connected
by Ethernet, we realize the possibility of a single compisediapplication server attacking
and compromising additional application servers. We atbaethis is unlikely, provided
we assume that traffic between application servers iscestrand that compromised appli-
cation servers will be detected and rebooted. We progretbetmonitoring mechanisms,

including the intrusion detection system [PN97, NP99],edfy these assumptions.

8In this case, each design element seems to focus on a phgstits) but this is not the case in general.

The elements simply reflect natural or convenient pointdeffor the designers.
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Figure 3: Structure of the design assurance argument fd>fhsystem.

4.2 AnI|AC for an Intrusion-Tolerant JBI

In the OASIS Dem/Val program sponsored by DARPA IPTO, anitecture for a highly
survivable exemplar Joint Battlespace Infosphere (JB$)deen designed and is now be-
ing implemented as a prototype system for demonstratioregatiation. This particular
intrusion-tolerant JBI (IT-JBI) is currently referred tg the name DPASA after the BBN-
led project that designed it.

The DPASA design combines state-of-the-art COTS techimedoguch as managed switches,
modern databases and programming platforms; DARPA-dpeélsurvivability technolo-
gies, such as distributed firewalls, autonomic responsenamems, distributed middle-
ware, intrusion detection and alert correlation, Byzamtiolerant protocols, and crypto-
graphic techniques; and design principles, such as cong&ihof attack effects, isolation

of compromised parts of the system, and the applicationcifrrdancy, diversity, and dy-

9DPASA stands for Designing Protection and Adaptation inBuavivability Architecture.
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namic adaptivity. Individually, each of these is an incretakéimprovement. Working
together and augmenting one another, they represent dicigmiand serious effort to ad-

vance the state of the art in the development of survivaldtesys.

A JBI consists of clients interacting via mechanisms of @bl subscribe, and query
(PSQ), with this interaction mediated and supported by apl@form providing middle-
ware services. A JBI client is a mission application thatalded to use the JBI platform
through the CAPI (Common Application Programming Inteefpfor its PSQ interaction
with other clients. In a typical implementation, a portidrtlee platform is integrated with
the JBI clients while the rest of the platform, the core, &x@ its own, independent of
any client, and implements the publish, subscribe, andygpgerations as services to the
clients. It is possible to view the survivability architect for a JBI as a specific instance

of the more general framework for designing survivablerttiated systems.

In the DPASA context, the JBI core is viewed as being coregrbithore extensively than the
JBI clients, and the design reflects that in the form of a lyigivkilable and well-protected
core. A distributed middleware layer manages the intevadbetween the clients and the
core. The clients, which are more numerous, also employehnand, redundancy, and
adaptation measures, but they are tightly monitored by tbeertrusted core. The whole
system is instrumented with intrusion detection sensoith & sophisticated correlation

mechanism as part of the core.

421 A Defense-Enabled JBI

A detailed description of the DPASA IT-JBI is beyond the seay this report, since
DPASA is not directly connected to the Cyberscience reseaxcept as it serves as a
test case for IAC development. Nevertheless, some faityliaith the DPASA design is

necessary to understand the design-level IAC we have deseldHere we present a brief
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overview of the DPASA design. For more details, the readeefisrred to the DPASA
Phase | Design and Validation reports [Pal03, San03].

One of the main JBI objectives is to facilitate easier, garckand on-demand integration
of disparate applications in support of a mission. The JBisaio achieve this objective by
treating a mission operation as loosely coupled interastietween information producers
and information consumers. This publish-subscribe icteya between the information
producers and subscribers, collectively called the JEInt§, is further augmented with
a query capability where consumers can query for informagiertaining to some topic
or request a specific information product. The event chaahstraction underneath the
publish-subscribe paradigm, as well as the informatioraflO) repository required to
support the query, implies a logical hub-and-spoke archite for the JBI. The JBI vision
further strengthens this logical hub-and-spoke view byuicg the notion of a JBI plat-
form that hosts the services to be used by the JBI clients sodsarvices for managing a

JBI. Figure 4 depicts the high-level structure of a notialil

The DPASA view of the JBI platform consists of thin cliensi@gent parts with the bulk of
the platform services implemented in a core. In additiome&oaxisting platform services in
the baseline (the JBI exemplar developed by AFRL), the defemabled JBI has services
that lie in the core, such as management of the various suwity mechanisms introduced
by the survivability architecture. These services are wggal as layered zones, with the
idea that most critical services are protected by multigierpeter boundaries, as depicted

in Figure 5.

Zones create concentric barriers between clients anaaritiore services. The design
objective is to force an attacker to compromise a host in ganlk, without being detected,
in order to mount an attack across zones. To prevent flonstfir@ttacks that could leap
across zones, client-to-core transactions that crosszregroxied at the communications

level, the middleware level, and in most cases at the agpitalevel. Thus, an attacker
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Figure 4. Structure of a notional JBI.

who succeeds in compromising a client would then have to comige one of the core
access proxies (in the crumple zone), and then compromisstarhthe operations zone,

in order to mount an attack on a system manager, all whileirentaundetected.

A network protection domain, provided by enhanced, enaypenabled network interface
cards (called ADF NICs) whose behavior is governed by speei@vork policy servers,

severely limits the ability of an attacker to mount integot confidentiality attacks against
the system from the wide-area network (WAN). Plausibleckddrom outside the system
would have to originate over back-end connections to dietitus forcing the attacker
through multiple zones in order to compromise the innernsost¢. Figure 5 shows the

details of the physical architecture within what is callecbeequadrantor channel

The zones are populated as follows:
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e The client zone contains all the various client hosts. Thests cannot communicate

directly with each other in normal operation.

e The crumple zone contains the core access proxies. Thesepoomnstitute the first

line of defense between the core and clients.

e The operations zone provides the JBI publish, subscribe,gaery functionality
as well as various information assurance functions, inotyithe policy servers to
manage the ADF NICs, alert correlation, and intrusionffdetection mechanisms,

such as the Guardians and the network intrusion detect&tersy(NIDS).

e The executive zone contains the system manager that hasbtloé goordinating the
operations of the other JBI components, managing the daediis of JBI clients,

and providing the primary interface for the JBI managers (8l CIO’s staff).

The hosts in a core channel communicate with each other owaareaged switch. The
switch has a hardware port-blocking capability that cdsttioe ability of hosts to commu-
nicate directly with one another. This provides for enfoneat of the zone structure (note,
in particular, that the access proxy cannot directly talkh® system manager) and limits

the effects of flooding attempts within, and among, core cpad.

The core is composed of redundant channels that providgsiotr/failure detection capa-
bility and reserve resources that are used if the capasildf one or more of the channels
are compromised. The level of redundancy is a trade-off éetwcost/manageability and
robustness of operation/intrusion detection. The DPAS#gieutilizes four core channels

(quadrants) to provide Byzantine tolerance for intrusibias may reach the executive zone.

Clients communicate over a network with the DPASA core via on more of the core
access proxies, depending on the particular protocol besegl. In the event that mul-

tiple compromises render quadrants temporarily inoperabinaccessible, the protocols
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will adapt to the number of available quadrants. The redonhdare quadrants employ
diversity across the crumple zone to make it unlikely thaytivould all be compromised

simultaneously by exploitation of a single vulnerability.

Cross-quadrant communications are strictly limited andter support three specific ca-
pabilities: 1) Robust PSQ protocols that guarantee thatwillde properly handled by
the core even if multiple quadrants become inoperative duailure or compromise; 2)
Byzantine-tolerant interactions among the system masdlat guarantee that overall core
behavior will be properly managed/coordinated if one systeanager is compromised,
and that good (although not Byzantine-resilient) core rganant/coordination will still
be available if multiple system managers are down; and 3jdooation among policy

Servers.

4.2.2 TheDesign-Level IAC for DPASA

The DPASA IT-JBI has provided an important test of the séguwa-design and IAC con-
cepts, resulting in significant refinements of both concéMs now present an overview of
the design-level IAC for the DPASA IT-JBI. The developmehttos IAC was supported
largely by the DPASA project under the sponsorship of the (3A%em/Val program, and
was performed by a large team from several organizations.r@presentation of the IAC

in SEAS was performed as part of the Cyberscience research.

The IAC for the DPASA IT-JBI is large and complex. The fullxteal version of the
IAC was produced by the DPASA project and is presented ingrgéect’s final validation
report [San03]. The SEAS representation of the IAC is alsgeland complex and cannot
be completely and legibly presented in this report. The SE&Sion of the IAC is best
viewed interactively in SEAS itself. The SEAS objects theatttire the DPASA IAC, along

with a version of SEAS with installation and use instrucipare provided as a separate
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deliverablet®

Types of Evidence One of the major differences between the IACs for DPASA and DI
is in the diversity and volume of evidence assembled, whachuch greater in the DPASA
case. This is partly the result of the scope and scale of DPASA, which is a more
complex system. It is also partly the result of more stringerd specific survivability
requirements for DPASA, many of which are expressed quaively. The presence of
guantitative requirements poses a significant challengieemevelopment of the IAC, es-
pecially at the design stage, when there are few, if anyfaats (such as hardware and
software) that can be directly evaluated and measured. elrcdse of DPASA, many of
the quantitative aspects of survivability were evaluatedugh simulation modeling, us-
ing an abstract mathematical model of the system that aimée faithful to the design

throughout the evolution of the system.

Other aspects of the design could be measured more dirgicitg the design specified the
use of certain well-developed and well-understood comptsasuch as intrusion detection
systems and policy-driven network interface cards. Stileoaspects of the design could be
dealt with in more abstract terms, using structured argusn@tvarious levels of formality,

ranging from plain English to mathematical logic) and exatory approaches, such as

whiteboarding.

These various forms of design validation were applied atingrto their appropriateness,

10As noted earlier, SEAS was developed partly under DARPA sprhip by SRI's Artificial Intelligence
Center (AIC). SEAS was originally developed to operate on Bardware running the Solaris operating
system. To facilitate the use of SEAS in open-source comguivironments (including SDL), the Cyber-
science project produced a version of SEAS patched to agperalPC hardware running various versions of
the GNU/Linux operating system. This patched version of SEg\provided to the Government under the

same terms as the original version.
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given the specific characteristics of the design elementgyl@yaluated and the nature of
the requirements placed on those design elements. Mordisakly, the following kinds

of evidence were integrated into the IAC:

e Logical argumentation Construction of a plain-English structured argument alleg
ing that a stated property of the design is true. In particufighe property is of the
form the design satisfies requiremdntind R is not quantitative, this technique can
be used to establish validity. Logical argumentation is alseful in verifying a log-
ical decomposition of a requirement into subrequirememrsvided the requirement

admits such a decomposition).

e Probabilistic modeling. Construction of a simulation model of the system (based
on design documentation) as it operates in a representaa/@ttack environment.
Solution of the model (values of measures defined on the modelthen determine

whether a given requirement (with nontrivial probabitsjuantification) is satisfied.

e Experimentation.Experiments with actual system components or prototypes. R
sults obtained here can sometimes be elevated so as totealdadesign with re-
spect to a higher-level requirement. Experimental resurksalso used to estimate

parameter values used in simulation models.

e Threat and vulnerability assessmeAnalysis of effects due to possible threats to the
system or vulnerabilities in the system. Results obtairadiccrease confidence in
the design (if positive) or suggest design modificationaéative). Results of such
assessments are also useful with regard to representaul affects in probabilistic

models.

e WhiteboardingAn approach for evaluating the relative strengths and wesdes of

a system design or implementation. In the context of oudeadilbn effort, it can be
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viewed as an experiment that tests the following hypothdsie IT-JBI design meets
its assurance requirements. Accordingly, this activityyiended to gather data that

convincingly supports or refutes this hypothesis.

The evidence referred to at the outset is design relatectisdhse that it testifies to desired
properties of the design itself (or existing component inpentations) that the practices
followed during the design’s conception. Accordingly, ded not refer to peripheral evi-

dence, such as the reputation or experience of the desjgti#sugh such evidence could

certainly contribute to a convincing IAC.

Design-related evidence can be further classified acogtdinvhether or not it testifies to
satisfying a specific requirement. Such a requirement caat bee top level (mission- or
system-level requirements) or at a lower level that leadsatsfaction of a higher-level
requirement. More precisely, evidence is requirementedla, for some specified or
derived requirement concerning the design in questiortfests to the assertion that the

design satisfies the requirement (or, indeed, if it attestse contrary).

Other types of design-related evidence need not be linkadpecific requirement, for ex-
ample, evidence that testifies to the design’s generabatolprevent or tolerate intrusions
due to various types of attacks. Results of threat/vulninabnalyses and whiteboarding

are typically in this category.

DPASA IAC Development Generally, a requirement at a relatively high level is first
decomposed into subrequirements by iterating a procesgjicill decomposition resulting
in a decomposition tree for the root requirement, as desdrib Section 2. In turn, such a
tree can usually be simplified by coalescing multiple oceneces of a subrequirement, in

which case the tree is technically a directed acyclic grg#Q).

An essential ingredient of any validation effort is cargfgtated design requirements that
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accurately and unambiguously capture desired propertiaa eventual implementation.

The principal requirement for the DPASA IT-JBI design is thkowing:

R1. The design, when implemented, will provide satisfactorgsitn support under real

use scenarios and in the face of cyber attacks.

Although this requirement is rather obvious, it requires@emrecise definition of terms

LTS

such as “satisfactory mission support,” “use scenarioyj’ ‘@yber attacks” to obtain con-
vincing evidence that R1 is indeed satisfied. To that enceraéhigh-level requirements of
a more specific nature are the following survivability gaafishe JBI exemplar, as stated
in the OASIS Dem/Val Proposer Information Pamphlet (PIRY @hich are referred to as

the “PIP requirements”:

PIP-1. Provide 100% of JBI critical functionality when under suiséal attack by a Class-

A red team with 3 months of planning.

PIP-2. Detect 95% of large-scale attacks within 10 minutes of &ttaitiation, and 99%

of attacks within 4 hours, with less than 1% false alarm rate.
PIP-3. Prevent 95% of attacks from achieving attacker objectioe4 ® hours.

PIP-4. Reduce low-level alerts by a factor of 1,000 and display nmegdual attack state

alarms.

PIP-5. Show survivability versus cost/performance trade-offs.

Note that PIP-5 is irrelevant with respect to R1; that is,swis objectives can be satisfied

whether or not the tradeoff goal is accomplished.

The PIP requirements are then grouped and decomposed atedapiFigure 6. Although

the remainder of the IAC structure cannot be depicted lgdible in its entirety, a sense

43



PIP-requirements

1-4
Bl survivabilit: . .
JBl su , ability JBI intrusion
req’'s . ,
/\ detection req’s
Ini.tialized JBI. JB.I |s properly IDS/Corr req’s
provides essential initialized
services
Authorized Authorized Authorized Authorized Unauthorized Confidential
publish is subscribe is query is join/leave is activity is info is not
processed processed processed processed properly exposed
successfully successfully successfully successfully rejected

Figure 6: Decomposition of top-level requirements.

of its size, scope, and general structure can be gleanedtfrergraph in Figure 7. An
interactive, browsable version of the IAC structure is digabwith the SEAS software

provided as a separate deliverable.

The DPASA IAC is currently not complete enough to make firmatosions about the
whether the DPASA design, when implemented, will meet thesdiBsivability objectives.
Not all areas of the IAC structure have been completely fid s, even at the design level.
In those parts of the IAC that have been detailed as far asdbigml permits, evidence
remains subject to human interpretation, and in the quaiviit assessments, significant
uncertainty remains. In the SEAS representation of the AS,uncertainty is directly re-
flected in the assignment of values representing strengthidénce. That is, on the SEAS
scale of 1/green (which, for IACs, we interpret as meaniexy likely, in response to a pos-
itively phrased question pertaining to survivability) teésl (interpreted agery unlikely,
we represent uncertainty as 3/yellow (meanasglikely as ngt One might argue that a
conservative estimation of evidential strength calls fa assignment of a value such as

5/red in the absence of strong evidence to support an IA cldiowvever, we have taken the
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view that, in the absence of evidence, a claim is neither aipg nor refuted. The values
5/red and 4/orange are reserved for cases in which the bledaidence arguesgainstan

IA claim, while the values 2/yellow-green and 1/green aedushen the evidence supports
the claim. To ensure that uncertainty does not lead to a $alisse of support for high-level

IA claims, we use strength propagation rules (see SectdntBat appropriately account

for the uncertainty at the top levél.

"n fact, SEAS is intended to capture uncertainty directiyptigh the assignment of multiple values that
represent the range of possible responses (or through signaent of no value at all, meaning complete
uncertainty). However, we have found that the availabléofusnethods in SEAS do not propagate such
uncertainty in a way that we find intuitive for IACs. We havetéfore opted to “overload” the middle value

(3/yellow) to represent uncertainty, which we concedesislitnot an optimal solution.
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5 Alternative Approaches

Many research efforts have been conducted in order to ovexdbe lack of a global and
commonly agreed upon process to evaluate whether a systefiesats security require-
ment. Such a process would include collecting and strugjuevidence supporting the
claim that the system indeed satisfies its security requrgmAlthough several partial
methodologies have been developed, there is still a lackaoinaplete methodology that
supports the assembly of a comprehensive IAC. In practioegelier, many more or less
advanced methodologies have been proposed and used assforezertifying computer

systems used in critical areas such as avionics and defense.

Our own research is related to several research areas:

¢ Defining guidelines for building systems that should be secu
¢ Defining and capturing system security requirements
e Discovering methods for evaluation of the security of erggsystems

e Providing technologies for assembling evidence

5.1 Engineering Guidelinesfor Secure Systems

Research in defining guidelines for building secure systemisproviding evaluation stan-

dards produced an effort of standardization called the “@om Criteria” [Com98].

The Common Criteria project harmonizes European, CanadrahU.S. Federal Criteria
into the Common Criteria for Information Technology SetyuBvaluation for use in eval-
uating products and systems and for stating security reouents in a standardized way.

Increasingly, it is replacing national and regional crdaexith worldwide criteria accepted
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by the International Standards Organization. The U.S. Bemnt of Defense published
the first criteria in 1983 as The Trusted Computer Securi@gliation Criteria (TCSEC),
more popularly known as the “Orange Book” [dod85]. The cuirigsue is dated 1985.
U.S. Federal Criteria were drafted in the early 1990s as ailplesreplacement but were

never formally adopted.

The Common Criteria project identifies seven levels of estédin assurance, and aims to
develop evaluation criteria for all seven layers that camygied to any security-critical
system. While the Common Criteria approach focuses on dgfstandards for expressing
security requirements and evaluations of systems agaiose requirements, our focus has
been on the complementary process of assembling the e@@erntcsupporting arguments
into an IAC. Our work is not tied to a particular standard, &adh include a variety of
arguments derived from different evaluation methodolsgi@ur aim is to go beyond the
standardization effort by allowing the assembly of evideoallected by different method-

ologies in a comprehensive and useful IAC structure.

5.2 Security Evaluation

Several technical advances have been reported by resesantipeoviding tools and meth-
ods for checking whether a software system satisfies itsriggcaquirement, and there-
fore provide evidence and evaluation techniques. Someogktkvaluation techniques are
model based. A model of a part of a system is built and cheakeeddnconformance to

a particular security requirement. Model-based techridusre been used to check secu-
rity protocols [DY83], enforce security policies [Sch0@] aperating systems, and model
various aspects of system dependability [DOID]. Code-based evaluation techniques use
the concrete implementation in place of a more abstract haydbcheck the source code

for security vulnerabilities. Tools such as Cyclone [JMi2], CCUred [NMWO02], and
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StackGuard [CPM98] use dynamic typechecking to check source code for boffer-
flow vulnerabilities, and insert run-time checks. Faulegtjon techniques [GOM98] are
a more general way of checking a larger class of securityarabilities including buffer

overflow.

5.3 Security Requirements Engineering

While there is general agreement that security requiresnengineering is difficult and
needs more attention, there is much less agreement on htwutdsbe done, as demon-
strated by a recent symposium devoted to security requitenjBur01]. Although there
are compelling arguments for significant use of formal méghio the development of se-
curity requirements [Rus01], current approaches (at lbaske described in the open liter-
ature) tend to be informal (mathematically speaking) armsoguided by developmental
methodologies, and informed by general security prinsigierived from experience, stan-
dards, and common security practices [Irv01, Ste01, AVBUI0Q1, Gas01]. Often there is
a tendency for security requirements development (andréeipe of security in general)
to focus more on mechanisms needed to address specificstarehtulnerabilities, rather
than on the overarching objectives of security requiresienterms of their role in meet-
ing mission objectives. As a result, the security requineim@s stated in a specification
document may lack context and traceability, both of whiaaitical, not only to provide
confidence in the correctness of the security requireméetagelves, but also to enable
more rapid isolation and resolution of failures to satigfgrh. Our proposed co-design
approach explicitly accounts for context and requiremémaiseability through the use of

the co-design object base as its central component.
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5.4 Technologiesfor Assembling Evidence
54.1 Safety Case Development

In the safety domain — as in security — it is usually impossiol show with certainty that
a system is absolutely safe. Instead, one must demondteadtéhe system is sufficiently
safe for its purpose. Such a demonstration cannot be a pathé&matical proof of safety”
(although mathematical proofs can be part of it), but a awring explanation, supported
by evidence, of why the system is safe enouglsafety casés a document where such a

demonstration is developed. More precisely, a safety casde defined as

a documented body of evidence that provides a convincingalidiargument
that a system is adequately safe for a given application, given environ-
ment [BB98].

It helps to think of a safety case as a document intendedneincea rational but skep-
tical person with adequate expertise (say, from a regylaigyanization) that a system is

sufficiently safe for being deployed and used.

A safety case is then about a particular system in a partiealdronment. It makes safety-
related claims about the system, produces supporting esej@nd develops an argument
that the evidence indeed supports the claims. The assumsgind judgments underlying
the argument should also be clear and explicit. Examplesd@fant pieces of evidence may
be the design process or tools used, results from faultainedysis or other safety analysis
techniques (cf. [Lev95]), quantitative data about theuf&lrates of hardware components
or the amount of testing done (testing coverage), proof oectness of part of the design,
and past field experience [BB98, WKM97]. A difficulty is to cbine heterogeneous pieces

of evidence to form a coherent and convincing argument ligesystem is adequately safe.
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Specialized tools have been developed to construct andtairaisafety cases [BBES,
FCM93], but they are essentially structured editors. Thelp lorganize and present a
safety case, typically in a diagrammatic fashion, but doh&dp ensure the soundness of
the argument. Generalist tools for developing structurgdraents [LHRO1] may be more

effective in producing convincing safety cases.

Safety cases provide a model for how heterogeneous dataecased as evidence in a

non-demonstrative, but convincing, argument that a sysi&sra desired quality attribute.

5.4.2 Software/Hardware Co-design

Software/hardware co-design emerged in the 1990s as gggatéd design of systems im-
plemented using both hardware and software component9§5@ED93, MA93, KAJWI3,
HDMT94, CGJ 94]. A typical co-design process derives a mixed hardwafeyare im-
plementation from a single system description. This preaeglves producing and ana-
lyzing specifications, defining and evaluating architezsypartitioning functions between
hardware and software components, and implementing theaoemts. Co-Design frame-
works [Lee01, LLEL02, BCG97, LSV98] now include comprehensive sets of verification,
simulation, and synthesis tools supporting the design afptex heterogeneous embed-
ded systems. These co-design frameworks have in commorsthefla high-level sys-
tem specification (often combining heterogeneous spetditéanguages) as the starting
point to a rational design, and support for examining, eatahg, and verifying alternative
architectures, partitions, and implementations [[ERS, OB98, CB98, Ber91, KAJW93,
GSK*01].

Software/hardware co-design provides a model of how a sggdgorocess can address
the tradeoffs required in resolving goals in different gasidimensions in a separate-but-

coordinated fashion.
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54.3 KAOS

KAQOS [DvF93, DDMv97, vDM95] is a goal-driven requirementsggneering method de-
veloped at the Université Catholique de Louvain. KAOS mexl at supporting the whole
process of requirements elaboration, from the high-leeallgyto be achieved by a sys-
tem to the objects, operations, and requirements to be mgieed. The KAOS language
includes a variety of requirement elaboration conceptsh &8 goals, requirements, as-

sumptions, agents, views, operations, and scenarios.

KAOS supports a systematic requirements elaboration mddthsed on the identification
and refinement of system goals, the identification of openatand agents relevant to the
goals, and the assignment of operations to agents. Agentiseaactive entities of a system.
Each agent is responsible for achieving some goals by penfigrappropriate operations.
Agents can be implemented by software and hardware, buttarsymay also include
human agents or mechanical devices. Environmental asgurmphay be discovered along
the way: typically, responsibilities that are assignedders or other agents outside of the
software system become environmental assumptions. Gia¢meent plays an essential
role. Refinement links are structured in an AND/OR relatiopshat allows one to explore

and document different refinement alternatives.

The requirements elaboration process is guided by me&keowledge explicitly cap-
tured in KAOS. The meta-level provides a rich taxonomy oflgoabjects, and operations
with associated heuristic rules and constraints. Heuasstidicate how a certain type of
goal may be refined. For example, the meta-level introdUdtesategory osafety goals

which are a subclass afoidance goaland can be refined intward requirementg/DL98].

KAOS provides a useful conceptual starting point for the hadxstract stages of security
co-design, where system requirements are derived fromanig®als. Its main shortcom-

ing is that the concepts it provides are specifically oridmbgvard functionality rather than
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security. As a result, security-specific concepts — vulbiéitees, for example — are not
easily represented, and the notion of requirements elboiia basically the classic notion
of refinement, which guarantees presentation of allowe@dweh but not preservation of

excluded behavior.

544 UML

The Unified Modeling Language (UML)[BJR99, FS00] is the mesdely used specifi-
cation notation in industry. It combines concepts from a hanof previously popular
methods — including, most prominently, Grady Booch’s wdrgr Jacobson’s Object-
Oriented Software Engineering (OOSE), James Rumbaugh&scOllodeling Technique
(OMT), and David Harel’'s Statecharts — in a unified framewobhitial work on UML
began in 1994 at Rational, and a standardization effort wigiated by the Object Man-
agement Group (OMG) in 1995. The OMG standard for UML verdidhwas published
in 1997. Among the contributors to the standard were thet@8ligiquipment Corporation,
Hewlett Packard, IBM, Microsoft, Oracle, and Texas Instemts. The diversity of nota-
tions in UML facilitates hierarchical specification. Foraemple, the structure of the system
architecture can be specified using class diagrams, arntukefutietails of the interaction,
such as communication protocols, can be specified usingci@tts. In addition, many of
the notations — including both class diagrams and statescharsupport a notion of hori-
zontal refinement, where a single “box” (i.e., class or $ted@ be expanded into a network

of “boxes and arrows” (i.e., a class diagram or statechart).

Because UML is ale factostandard, it provides a good model of how diverse functional

models should be integrated in the COB.
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5.4.5 AdaProgramming Support Environments

As the design of the Ada programming language matured iretleel970s, it became clear
that some of its features — such as separate compilationrheiN€CLUDEandUSEcon-
structs — entailed that compilation must be supported byn@esdhat more sophisticated
environment than those of the languages it was intendegtaae (primarily, Fortran and
assembler). Thus, an effort to specify the features thatdaPyogramming Support En-
vironment (APSE) should include was initiated. Three merghor to the official release
of the final version of the official APSE specification [(HO86&lled “STONEMAN?”, in
February 1980, a workshop was held in San Diego, Califotoigrovide a forum for a
large number of representatives of industry, academiatt@dovernment to comment on
a preliminary version of the document. The principal conclusion of the workshop
was that there was no consensus as to what an APSE shouldkepkid that STONE-
MAN should notbe taken to be a set of firm requirements, but rather an ideal toward which

APSESs should aim.

Clearly, creating a full-featured APSE with powerful systengineering support tools
would require tremendous effort. Although the STONEMAN @fieation called for ev-
ery life cycle artifact, from early informal statements efjuirements through the current
configuration, to be stored in the APSE database, the Adaahadver grew sufficiently
to support development of this capability by vendors. Alitlo the value of retaining this
information was generally agreed upon, and sophisticaigld that made use of the infor-

mation were hoped for, the utility of the record was nevealdsthed in practice.

From the perspective of the proposed research, an APSEdatalmuld be deficient in two
respects. First, the emphasis is placed on storing thetsesfuhpplying a software devel-
opment process (in our case, security co-design), rathardtoring a model of the process

itself and a record of how it was applied in the particularecaBhus, crucial information
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about the source of information (i.e., where it came from whg) and interrelationships
among various bits of information would be lost. Second, mpleasis is placed on the
necessity of separating information regarding functiip&lom information regarding se-
curity and other dependability properties. There is alseregal problem with the APSE
perspective: it assumes that the software for a system willdveloped within a single
environment. If it is assumed that the present practiceftéréint developers using differ-
ent environments — different editors, different compilensd even different programming

languages — continues, the COB must be more loosely couplin tenvironment.

54.6 Knowledge-Based Software Assistant

The report on a knowledge-based software assistant (KBGAB[ 83] outlined an am-
bitious approach to developing an expert system to medratesapport all life cycle ac-
tivities. In particular, all decisions concerning requients, design, validation, imple-
mentation, testing, and maintenance were to be recordedcomguterized “corporate
memory”. The rationale for the decision was to be includedva. Subsequently, the
Rome Air Development Center (now, the Air Force Researclotatbry at Rome) funded
development of prototype KBSA “facets” for requirementsigsis, specification, devel-
opment, performance evaluation, testing, and project gemant. While the goals of the
original report were not realized, the prototypes providetéchnology base for subse-
guent development of very successful, but more limitedst@such as Amphion at NASA
Ames [BFH"99] and the Kestrel Institute’s Planware plan synthesisesydBGL"98].
These two tools have primarily focused on domain-specifitvswe synthesis, that is, on
building a domain-specific implementation “facet”. Othesearchers have focused on
building domain-specific versions of other facets. Howgtlegre seems to have been lit-
tle research and development effort devoted to creatingn@adwespecific version of the

KBSA infrastructure. Our proposed development of a corfgonaemory tailored to the
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needs of security co-design and an explicit knowledgeaspresentation of the secu-
rity co-design process, designed for use with conventideaelopment tools rather than
KBSA facets, represents “simplification for achievabilipf the KBSA vision in a new

dimension.

5.4.7 Literate Programming

The literate programming movement, inaugurated by DonaddtK [Knu94], represents
an attempt to capture the rationale for a program’s designitarsource code in a single
document. Both nicely formatted human-readable progracumentation and the source
code that is provided to the compiler are generated fronsthgde document. The primary

weakness of this scheme, from the point of view of the prope$irt, are

1. the language in which the document is written is desigpedifcally for the pur-
pose of generation of documentation and source code, rdtheraiming at a more
general-purpose representation of information from wtother artifacts — a re-

guirements specification, a test suite, and so on — could bergted,

2. the data structure used, a text file, is not suited to stomad retrieval as a collection

of objects in a database,

3. the recorded rationale is in the form of natural languagg aind is thus ill-suited to

play any useful role in analysis tools,

4. there is no tool support to encourage recording the campdéionale or to assist in

appropriately structuring it, and

5. what is recorded is typically a final, polished versiontd tationale, rather than a

complete historical record of the search for that rationale
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While the technology base provided by literate programnisniggappropriate for our ef-
fort, it is worth noting that the basic idea of recording téonale for a program as it is
developed has led to software of impressive quality. KreulpX typesetting system, for
example, is generally believed to contain fewer errors #dranother program of compa-
rable size. It seems reasonable to expect that simply rexptide security aspects of the
system design process in a form suitable for external reweWead to similar improve-

ments in security levels, even prior to the development afyasis tools.

57



6 LessonsL earned

The Cyberscience project set ambitious goals for advantiagcience and practice of
secure systems development. Although many of our longer-gmals remain to be met,
we believe that our security co-design methodology andrapemying work on the de-
velopment of information assurance cases represent aglvamdhe field of information

assurance, both in terms of our understanding of the clggdkeim the development of

high-assurance systems and in terms of practical methodet@loping such systems.

Of course, research results are rarely unambiguouslyip@sand ambitious goals are
usually not met completely. In this sense, the results ofe@ydience are not exceptional:
there are positive, affirming results, and other resultsgbant to a clear need for further

research.

6.1 Security Co-design

On the positive side, we believe that our primary hypothisisleveloping the co-design
methodology — namely, that security must be an integral phdgecure systems devel-
opment — has been supported fully by our experiences in agply to three different

systems.

Our first case study in security co-design and IAC develogmes Genoa CrisisNet,
which was at the time the central storage management compohthe Genoa crisis pre-
diction and analysis systetd. We realized at the time that using Genoa CrisisNet as
case study could be problematic, since it was already in wareed state of development,
and thus, could not easily serve as an example of securitiesmmn, since the developers

had clearly not applied co-design principles, and we weteahdéiberty to undertake the

125omewhat coincidentally, SEAS is a component of Genoa.

58



design from scratch. However, in attempting to construchssurance argument for Cri-
sisNet, we decided to assume a “clean slate”, developingsineet design from top-level
requirements (which, unfortunately, had to be reverseremged from Genoa use cases
and implemented components). This process quickly uneovarfundamental weakness
in the design of CrisisNet that could allow its access cdamrechanisms to be subverted,
providing a clear example of the results that can be expdobed failure to account for

security requirements at the outsét.

In the DIT and DPASA cases, we were fortunate to have beermvegi@arly enough in the
design process that co-design principles could be apphieshiintegral way. Although a
full IAC for DIT was never undertaken, the system was denranst to meet high-level,
nonguantitative assurance goals, through its ability teeseorrect Web content in the face
of successful cyber attack on some components (intrusleratace). For DPASA, the jury
is still out; the system is under development and is expedotbd subjected to evaluation by
concerted red-team activity in early 2005. Nevertheldss design-level IAC did provide
convincing evidence to support claims that a system bulDPASA design specifications
would, with high probability, satisfy its survivability gelirements. Anecdotal evidence
gathered throughout the design phase suggests that féedtacvalidation (IAC) activity
back to the designers did produce observable and measumginevement in the design

with respect to survivability goals.

6.2 Experiencewith SEASfor IACs

Our use of SEAS in the development of a design-level IAC fa BPASA IT-JBI has

identified several strengths of SEAS that we believe shoellprbserved in any future IAC

13Subsequently, and mostly coincidentally, the Genoa pt@bandoned CrisisNet in favor of a COTS

product believed to have better security and survivalglitgracteristics.

59



development tool, and several significant shortcomingsftitare tools should strive to

overcome.

6.2.1 Strengthsof SEAS

Organization and Corporate Memory From the point of view of IAC construction,
SEAS'’s greatest value is perhaps as an organizational Thel tree-structured arguments
that SEAS supports correspond closely to the (acyclic)lgstpuctured arguments around
which our notion of IACs is built. In fact, it is possible, atiugh awkward, to construct our
more general graph-based (DAG) argument structures ugiA$SIn addition, SEAS sup-

ports argument versioning, so that the history and evaiuticarguments can be tracked.

Easeof Use SEAS presents a simple and intuitive interface, along wothtext-sensitive
help, which makes it relatively easy to begin using the SE&@® fairly quickly. At the
same time, SEAS can be viewed not only as a tool, but also asadigan for argument
construction in the intelligence domain. Becoming profitim the SEAS paradigm re-
quires more time and effort, although significant help araheples are available to assist
in the process. However, not all aspects of the SEAS paradjgmear well suited to IAC

construction, as discussed in Section 6.2.2.

Support for Controlled Collaboration A useful feature of SEAS, both for its intended
application and for IAC construction, is its support for nusger and collaborative argu-
ment construction. SEAS supports user accounts and hmecataser groups, and en-
forces access control on SEAS objects (templates, argsiregnt) based on administrator-
and owner-specified access control lists (ACLs) that defihe may read, modify, and

delete specific SEAS objects. Most important, the SEAS pginaéncourages review and

assessment of arguments by multiple users, and the SEA8dnakcord these multiple
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assessments and highlight areas of agreement, which temdstorce confidence in an

argument, and disagreement, which may indicate a needigitrawd revise an argument.

6.2.2 Shortcomingsof SEAS

Assessment of Soundness and Completeness Perhaps the most significant shortcom-
ing of SEAS, from the standpoint of IAC support, is the abgeotany objective means
(and mechanism for incorporating such means) for asse$isengalidity of constructed
arguments. In the SEAS paradigm this assessment is lefebntd the judgment of hu-
man evaluators. While the use of SEAS’s confidence valueasaagd simple confidence
propagation functions can assist assessors in identigjieas of potential weakness in ar-
guments, these values are rooted in subjective assignroertdues and so must yield
subjective results. Of course, it should be noted that thfg@ach may be well suited
to SEAS’s intended application, but for IAC constructiorng weed something stronger
to assist argument developers and assessors in deterninitige extent it is possible to

determine objectively) whether assurance arguments arelssmd complete.

As an illustration of the issue, consider that SEAS does nakerexplicit (nor does it
allow the user to make explicit) the intended meaning of tremthing of a node in the
argument graph. For example, take the common case wheratemels the branching of a
claim A into subclaims4,, ..., A, to be a conjunctive implication; that is, claifhholds

if each of subclaimsi; throughA,, holds. As a start, one might desire that the tool simply
evaluate the implication; that is, determine a truth valre4 based on the truth values of

A, throughA,,.* But to assess completeness of support for the claim, one estadtlish

n fact, for this case, it is possible to emulate the desiedthlvior in SEAS. One can select a binary range
(green/ red) for the values of4, A4, ..., A, and the fusion methoghaximum(wherered is “stronger” than
greer). The value automatically assigned fowill be green(true) if each ofA; throughA4,, is assigned

green otherwise A will take the valuaed (false).
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that theimplicationis true; that is, we must show that the truth of all subclauns. . ., A,

is sufficient to establish the truth of claifh To provide automated support for this sort of
assessment, we require logical specification and reascapapilities (“theorem provers”,
if you will) for experts to use in formulating their argument A significant challenge
will be to make such capabilities available without sewecgimpromising the tool's ease
of use. Of course, it is unreasonable to expect that novicdsrmal methods will be
able to make effective use of such capabilities as rapidiyneg may learn to use SEAS.
However, we believe that a reasonable compromise would lbeat@ a “library” of the
most IAC-relevant automated reasoning methods availabdaeg with intuitive interfaces

for specifying the intended relationship of nodes in an argni.

We note, however, that more general notions of completeinet®e context of 1A argu-

ments are impossible to address with absolute certaintgnaated or not. For example,
for any useful system it is not possible to make a “completguiment that the system is
free of risk to the objectives for the system. However, it rhaymore feasible to establish

that the system is free of a particular set of vulnerabgitgthin a specific threat model.

Integration and Propagation of Results A particular challenge to the use of SEAS in
the DPASA design validation effort has been the need to rateghe results of different
validation techniques and to combine these results intaiingtul measures of satisfaction
of the system’s security objectives. For example, a sigmitipart of the validation effort
has involved the use of probabilistic modeling, via stotaactivity networks (SANS)
[DDD*00], to estimate the availability and integrity of certanitical JBI functions (e.g.,
any given attempt to publish an authorized information cbje the JBI is expected to
succeed with probability 0.97). The different measuresmated from the SAN models
constitute evidence that supports (or perhaps fails to@tiphigher-level 1A claims, and

this evidence is incorporated into the overall IAC struetat the appropriate places. When
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we have precise, objective (in particular, numeric) evadgeto support a claim, we would
like to maintain maximal precision as we proceed “up” thephran order to determine
more objectively the strength of support for the highegelelaims. But in SEAS we are
forced to make a manual determination of the strength (mgesf the simple 1-5 range
that SEAS supports) of that evidence at the node where tliemrse is attached, and the

desired precision is lost (except in cases where the sufgpalosolute).

Because the SEAS interface is tightly integrated with itst&tbased argumentation en-
gine, it is difficult to extend the reasoning and evidentiedisgth propagation mechanisms
to accommodate additional and, especially, user-defimactifans for combining and prop-
agating results. Moreover, it is often the case that sonweméevidence includes a specific
(perhaps numeric) result that is independent of the stheoigthe evidence. Thus, we be-
lieve it is useful to separate the notions of evidence (tssahd evidential strength so that
both may be propagated and used appropriately at highds levehe argument structure.
As is the case for reasoning about soundness and compleiémeshallenge here will be
to include the flexibility to specify result and strength pagation functions without unduly

compromising ease of use.

Process vs. Product SEAS emphasizes thgrocessof argumentation, particularly in
terms of interaction and collaboration. These featureoamurse essential to SEAS’s
role in interagency intelligence analysis and crisis preaoin, where one of SEAS’s major
goals is to facilitate collaborative intelligence assessin These features are clearly of
benefit to IAC development as well. However, we find that thexeds to be much more
attention given to theroductside of IAC development. In SEAS, the principal product is
an interactively browsable argument, and there is only g M&ited capability for export-
ing (fragments of) arguments for use outside the SEAS enment. For IACs, the ability

to generate self-contained representations (such as éexinmtents) of full arguments at
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user-selectable levels of detalil is essential, so thatAedan be made readily available
for possible noninteractive review by outside assessatdanncluded as part of other IA

assessment products, such as certification reports.

Constraints on Argument Structure SEAS requires a high degree of regularity and
even symmetry in argument structure. For example, SEASorets requires both that
every nonleaf node in an argument template have the sameanuwhihildren and that
the tree be “full”, that is, that every root-to-leaf path bahe same length. As with other
features of SEAS, this usage constraint was motivated bydiere of SEAS’s intended
application for assisting intelligence analysts in evahgaevidence supporting different
hypotheses. The idea is that, by forcing analysts to frareg tirguments in terms of
guestions whose answers have equal weight, analysts weu&ss likely to overestimate
(or underestimate) the relative support each answer peewial the answer for a higher-
level question. Similarly, by forcing analysts to devel@ele “branch” of an argument to
the same depth, analysts should be more likely to give caapp@amounts of attention to
the development of evidence and argumentation to suppariahswers to questions in the

different branches.

These constraints on argument structure may be approfoatvaluating evidence on
intelligence matters, where the evidence tends to be mdnedive and the strength of
the evidence necessarily more dependent on human intatipret For IACs, however,
we have found that attempting to force arguments into reguld symmetric structures is
more likely to skew the results than to balance them. Afted#ferent organizations and
different applications typically have different overaksirity objectives and therefore place
different emphases on different security attributes sgleanfidentiality, integrity, and
availability. These differing emphases, together with\tagying availability and strength

of evidence to support IA claims, tend naturally to drive giicture of IA arguments to
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be less regular and more asymmetric.

It should be noted, of course, that SEAS’s strong conssantargument structure have
been relaxed somewhat in version 6, largely in responsesttbfck from both the intelli-

gence community and our own IAC work. Still, the remainingsinaints pose a significant
practical impediment to the rapid creation and evolutiofre#-form argument structures,

which are best suited to IACs.
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